Log In
Sign Up
close
Home
Hire
Find Work
Freelancers
Portfolios
Test Ideas
Volunteer
Promote
Companies
email
Messages
notifications
Notifications
dashboard
Dashboard
arrow_drop_down
Marketplace
Usability Testing
settings
Settings
Log Out
menu
search
Hire
Find Work
Freelancers
Portfolios
Test Ideas
Volunteer
Companies
Promote
Log In
Sign Up
Mustapha EL OUAHABI
add
Connect
mail_outline
Message
more_horiz
Overview
Intro
location_on
Casablanca, Morocco
Senior E-Lecturer- Applied Statistics & Research Methods ASRM at
Ibn Tofaïl University - Kénitra, Morocco
watch_later
Joined January 13, 2022
Skills
Big Data Analytics
Python
Tableau Software
Business Intelligence
SPSS Statistics
Statistics
Statistical Modeling
Machine Learning
About
Senior Data Analyst / Statistician / Tableau- Business Intelligence / Python- Data Analysis & Visualization/ Tableau- Data Analytics
Experience
Ibn Tofaïl University - Kénitra, Morocco
Jan 2019 – Present
Kénitra, Morocco
Senior E-Lecturer- Applied Statistics & Research Methods ASRM
I teach (I), (II), & (III) • (I) Advanced Statistics using SPSS & SAS: (1) Multiple Linear Regression MLR, (2) Reliability Analysis of a Scale (i.e. an instrument/ an e-survey, Computing Cronbach's Alpha), (3) Factor Analysis EFA, (4) Parallel Analysis, (5) Cluster Analysis CA, (6) Multilevel Modeling (i.e. HLM)... • (II) Business Intelligence using Tableau: Big Data Visualization & Analytics using Tableau Software (1) Creating various Animated Charts, (2) Generating Insightful interactive KPIs' Dashboards, (3) TimeSeries Forecasting in Tableau, (4) Trend Analysis: Displaying "Overall Trend" via Slope Charts in Tableau, (5) Predictive Analytics (Linear/ Polynomial Regression Modeling), (6) Performing Cluster Analysis (Kmeans Clustering...), (7) Performing Segmentation (Mapping & Animating Segments)... • (III) Data Analysis & Machine Learning (ML) using Python: Python: Pandas, Sklearn, Statsmodels package, Apyori module ... (1) Hierarchical Clustering (HC) using Python Sklearn (2) K-means Clustering– Elbow method using Python Sklearn (3) Random Forest Classification using Python Sklearn (4) Logistic Regression (LR) & Multiple Linear Regression (MLR) using Python Sklearn & Statsmodels package (5) K-Nearest Neighbor (KNN) Classification using Python Sklearn (6) Linear/ Quadratic Discriminant Analysis (LDA/ QDA) using Python Sklearn (7) Decision Trees using Python Pandas & Sklearn (9) Apriori Algorithm (Market Basket Analysis) using Python Apyori module (10) Support Vector Machine (SVM) Algorithm using Python Sklearn…